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In the numerical integration of the Landau-Lifshitz-Gilbert
(LLG) equation, stiffness (stability restrictions on the time step
size for explicit methods) is known to be a problem in some
cases. We examine the relationship between stiffness and spatial
discretisation size for the LLG with exchange and magnetostatic
effective fields. A maximum stable time step is found for the
reversal of a single domain spherical nanoparticle with a variety
of magnetic parameters and numerical methods. From the lack
of stiffness when solving a physically equivalent ODE problem
we conclude that any stability restrictions in the PDE case arise
from the spatial discretisation rather than the underlying physics.

We find that the discretisation induced stiffness increases as
the mesh is refined and as the damping parameter is decreased.
In addition we find that use of the FEM/BEM method for
magnetostatic calculations increases the stiffness. Finally, we
observe that the use of explicit magnetostatic calculations within
an otherwise implicit time integration scheme (i.e. a semi-implicit
scheme) does not cause stability issues.

Index Terms—Numerical stability, Micromagnetics

I. INTRODUCTION

Dynamic micromagnetic simulations center around solving
the Landau-Lifshitz-Gilbert (LLG) equation with various ef-
fective fields. In this paper we focus on continuum mechanics
models of micromagnetics, where the LLG with exchange
becomes a system of partial differential equations (PDEs).
For such models stiffness (the restriction of time step size
by stability rather than by the desired accuracy) has long been
recognised as an issue, at least for some problems [1].

Stiffness in PDEs has at least two possible sources: firstly a
problem may be physically stiff due to large differences in the
characteristic time scales of different (physical) components
of the solution [2, Chap. 4]; secondly the choice of spatial
discretisation method may cause stiffness. In particular a fine
spatial discretisation often results in a stiff system of ODEs.
An intuitive explanation for this is that a finer mesh resolves
shorter wavelength modes, even if they have almost no effect
on the resulting solution. Shorter wavelength implies higher
frequency, i.e. shorter characteristic time scales. These modes
interact with the solution, and the large variation in time scales
causes stiffness in a similar way to physical effects. For a
rigorous discussion of this effect in terms of the eigenvalues
of the time integration operator see e.g. [3, Sec 8.2].

Time integration methods can be roughly divided into two
classes: those which are not good at solving stiff problems
and those which are. These two classes correspond to explicit
methods that calculate the value at the next time exclusively
in terms of previous values and implicit methods in which

a system of equations must be solved. Typically one step of
an implicit method requires more computational effort than a
step of an explicit method because of this solve. However good
implicit methods are unconditionally stable, allowing them to
take much larger time steps when applied to stiff problems
[2, Chap. 4]. Hence there is a trade-off between time step
size and the computational effort per step. Since the optimal
choice depends on the stiffness it is important to understand
its origins in micromagnetic simulations.

In this paper we examine numerically the relationship
between stiffness and spatial discretisation size for a sim-
ple micromagnetic problem where stiffness due to physical
effects can be ruled out. We also explore how stiffness is
affected by the use of the FEM/BEM method for magnetostatic
calculations. Finally, we study the effects of stiffness on
methods which combine explicit magnetostatic calculations
with implicit exchange field and LLG calculations (i.e. semi-
implicit methods).

II. THE MODEL

We compute the time dependent behaviour of magnetisation,
m = m(x, t), using the non-dimensionalised Landau-Lifshitz-
Gilbert equation [4] with dimensionless Gilbert damping con-
stant α

∂m

∂t
= −m× h + αm× ∂m

∂t
,

h = ∇2m + hms + hap.
(1)

Here hms is the magnetostatic field and hap is the applied field,
both in units of the saturation magnetisation, Ms. Unit distance
is the magnetostatic exchange length,

√
2A

µ0M2
s
≈ 1-10nm. Unit

time is (|γ|Ms)
−1 ≈ 5ps. Standard boundary conditions for

zero surface anisotropy are used, i.e. ∂m∂n̂ = 0 where n̂ is the
outer unit normal.

The magnetostatic field is calculated via a scalar potential
using the FEM/BEM method [5] [6]

∇2u = ∇ ·m,

∇2φ = ∇ ·m,

hms = −∇φ,
(2)

where φ is the standard magnetostatic potential and u is
an auxiliary potential used to apply the boundary condition
lim|x|→∞ φ = 0. The corresponding boundary conditions are
∂uint

∂n̂ = m · n̂ and φ = G
[
u
]
, where G is the BEM operator.



After discretisation by collocation the BEM operator is a dense
matrix with elements given by

Gij =
γ(xi)δij

4π
− 1

4π

∫
Γ

ϕj(y)
n̂(y) · (y − xi)

|y − xi|2
dy, (3)

where Γ is the boundary of the magnetic region, xi is the
location of node i, ϕi is the corresponding shape function
and γ(xi) is the solid angle filled by the magnetic region
as x → xi. The singular integrals in (3) can be evaluated
analytically for linear triangular elements using the Lindholm
formula [7]. The boundary value of φ at node j is given in
terms of all the boundary values of u by φj =

∑
i Gijui

(i.e. by a dense matrix multiplication on the vector of nodal
values). Details and a derivation of the FEM/BEM method
may be found in [6, Sec 2.2].

For all equations other than the BEM operator a standard
linear Galerkin finite element discretisation is used [8, pg. 25].

A. Implicit time integration

For implicit integration we use the implicit midpoint rule
(IMR) [9]

mn+1 = mn + ∆nf

(
tn+1 + tn

2
,
mn+1 + mn

2

)
, (4)

where f(t,m) = ∂m
∂t (t,m) and ∆n = tn+1 − tn. The

complete problem (including the magnetostatic potential equa-
tions) is then linearised using Newton’s method. The resulting
linear system is solved using GMRES with an incomplete
LU decomposition1 of the sparse parts of the system as
a preconditioner, ignoring the dense block in the Jacobian
arising from (3).

B. Explicit time integration

For the explicit integration we need to use an explicit
rearrangement [4, pg. 181] of (1)

∂m

∂t
(1 + α2) = −m× h− αm× (m× h) . (5)

As the time integrator we use a two stage Runge-Kutta method
(RK2), also known as Heun’s method:

m∗ = mn + ∆nf(tn,mn),

mn+1 = mn +
∆n

2
(f(tn,mn) + f(tn+1,m∗)) .

(6)

Time derivatives are calculated within the Galerkin method
by inverting the finite-element mass matrix using a diagonally
preconditioned conjugate gradient solver. The magnetostatic
potential φ is recalculated using the FEM/BEM method at
appropriate time and magnetisation values during each stage
of (6). The Poisson solves, (2), required for the evaluation
of the potentials u and φ use a conjugate gradient solver
preconditioned with algebraic multigrid2.

1Hypre’s Euclid preconditioner [10] with no drop tolerance and factorisation
level 1.

2One V(1,1) cycle of Hypre’s BoomerAMG preconditioner [10] with
Gauss-Seidel smoothing, CLJP coarsening and a connection strength threshold
of 0.7.

C. Semi-implicit time integration

Our semi-implicit time integration scheme treats magneto-
statics explicitly and other terms implicitly. This is a typical
approach used in FEM/BEM methods to reduce the size of
the Jacobian and avoid the inclusion of the dense BEM block
(3). Non-magnetostatic terms are dealt with using IMR, as in
implicit integration without magnetostatics. The magnetostatic
potential is calculated at the start of the step and projected (in
order to retain second order accuracy) to the midpoint using
a simple linear extrapolation formula

φn+1/2 =
∆n/2 + ∆n−1

∆n−1
φn −

∆n

2∆n−1
φn−1. (7)

This results in a semi-implicit midpoint rule (SIMR).
Our model is implemented using oomph-lib, an open

source multi-physics finite-element library [11] [12].

III. THE TEST CASE

As our example problem we chose a sphere with a radius
of one exchange length. The initial magnetisation is m =
[0.2, 0, 1.0]/|m|, the applied field is hap = [0, 0,−1.1]. We
considered three values for the Gilbert damping constant: α =
1, 0.1 and 0.01. With this geometry and uniform magnetisation
the magnetostatic field can be analytically shown to be hms =
−m/3 throughout the domain [4, pg. 112], and so, due to
energy considerations, the magnetisation remains uniform for
spheres of radius R < 2.082

√
3 ∼ 3.606 exchange lengths

[13, pg. 211].
The dynamics are therefore very simple: the magnetisation

processes around the z-axis while gradually damping towards
the applied field (along the negative z-axis). This simplicity
means that the problem can also be written as an ODE,
allowing for useful comparisons. Additionally exact solutions
for the switching time are known [14], allowing quantification
of the error.

Good quality (radius-to-edge ratio > 2) quasi-uniform
unstructured tetrahedral meshes were generated using TetGen
[15]. Meshes were refined by decreasing the maximum ele-
ment volume parameter.

All simulations were run for 4 time units (≈ 20ps) with a
full reversal taking between 8 and 400 time units depending on
the damping. We ran the experiment without magnetostatics,
with FEM/BEM magnetostatics and with the analytical mag-
netostatic field for each value of the Gilbert damping constant.

We use a simple heuristic algorithm to find bounds for
the maximum stable step size, ∆max: The computation is
repeated with a sequence of decreasing step sizes (halved
each time) until a stable solution is observed, with step size
∆a. A solution is considered to be unstable if at any node
|m| 6= 1 or if the maximum angle between the magnetisation
of neighbouring nodes is greater than π/4. The initial step size,
∆init is selected such that the temporal error is sufficiently
small (so that any reduction in step size below this value is
wasteful).

This provides bounds on the maximum stable step of
∆max ∈ [∆a, 2∆a). To tighten these bounds we then use



two steps of a standard binary search algorithm: the com-
putation is run with ∆n = 3∆a/2, if it is successful then
∆max ∈ [ 3∆a

2 , 2∆a) otherwise ∆max ∈ [∆a,
3∆a

2 ).
As mentioned above, the simple geometry of this problem

means that the physics can be captured by an ODE version of
the LLG:

∂m

∂t
(1 + α2) = −m× h− αm× (m× h) ,

h = hap −m/3,
(8)

where m = m(t).
To assess physical stiffness and find a suitable ∆init we

solved (8) using the RK2 and IMR methods detailed above
with ∆ = 0.1. Using IMR with α = 0.01 we found a
relative error in the final switching time of 0.3% (absolute error
1.2 time units ≈ 6ps), for other values of α the percentage
error is even smaller. The relative error in switching time with
α = 0.01 using RK2 was 2.25% (this order of magnitude
error difference may be a testament to the accuracy of geo-
metric integration [9]). Since these results are from an ODE
calculation the error is only due to the time integration, with
no contributions from spatial discretisation. Based on these
results we conclude that ∆init = 0.1 gives a sufficiently small
temporal error to be a reasonable maximum time step size.
Additionally, since no stability issues were seen for any value
of α, we conclude that any lack of stability in the PDE case
must arise purely from the spatial discretisation rather than the
underlying physics.

IV. RESULTS

The results of the experiments with hms = 0 are shown in
Fig. 1. Results with full FEM/BEM magnetostatics and results
with the analytical formula for magnetostatics are shown in
Figs. 2 and 3 respectively.

In all cases we find that as the damping constant is reduced
by an order of magnitude, stable explicit time step sizes are
reduced by approximately a factor of two (due to an increase
in the stiffness).

Comparing Figs. 1 and 2 we see that using FEM/BEM
magnetostatics significantly increases the stiffness, requiring
roughly an order of magnitude smaller explicit time steps.
However, from Fig. 3 we see that adding the exact field does
not induce stiffness, so we can conclude that this effect is
due to the FEM/BEM discretisation and not the magnetostatic
field itself. From our data we cannot predict whether other
methods of calculating the magnetostatic field, such as multi-
pole methods, will result in similar increases in the number of
explicit time steps required. However we expect that the effect
is due to the coupling with the additional Poisson problems
(2), thus any potential based method is likely to exhibit similar
behaviour.

Fig. 2 shows that using a semi-implicit method with ex-
plicit magnetostatic calculations (SIMR) imposes no stability
restrictions on the time step due to spatial discretisation for
the spatial resolutions required for micromagnetic problems.

To further analyse our results we need an estimate of the
ratio of computational effort for explicit vs implicit time
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Fig. 1. Maximum stable time step against discretisation size for LLG without
magnetostatics. Data points are the stable dt values found, error bars represent
the range in which the largest stable time step is contained. The horizontal
dashed line shows the time step where RK2 and IMR are equally efficient
(IMR is more efficient when the maximum stable step of the RK2 method
moves below this line). The maximum time step is limited to 0.1 for accuracy
reasons.
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Fig. 2. Stable time step against discretisation size for LLG with FEM/BEM
magnetostatics.
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Fig. 3. Stable time step against discretisation size for LLG with hms =
−m/3.



steps. Without magnetostatics we find that each step of IMR
takes on average 5.86 times more computation time than a
step of RK2. With magnetostatics each step of SIMR only
takes 3.40 times more computation time than a step of RK2
(the difference is due to the cost of solving multiple Poisson
problems at each Runge-Kutta stage). Using these ratios we
can calculate the stable RK2 time step required to have
equivalent computational efficiency to IMR with step size 0.1.
This stable step size is marked on Figs. 1, 2 and 3 with a
dashed line.

Based on these results we say that a problem is “stiff”,
and that an implicit method will perform significantly better
than an explicit one, if the ratio of the desired time step,
∆init to the maximum stable explicit time step, ∆max is
greater than 20. A caveat is that both types of model could
be further optimised using, for example parallelism, improved
preconditioning, mass lumping, boundary matrix compression
[6, Sec. 3] etc.

Typical advice for the number of elements per exchange
length is that an absolute minimum number is one, and in order
to show that the results are mesh independent the mesh must
be refined a few times [16, Sec. 11]. This leads to a reasonable
finest mesh with around three elements per exchange length.

We see that with FEM/BEM magnetostatics, realistic damp-
ing (α = 0.01) and at least three elements per exchange length
the problem is stiff.

Without FEM/BEM magnetostatics stiffness only occurs if
refinement to around five or more elements per exchange
length is needed for any part of the domain. Problems that
require this level of refinement include resolving the geometry
in studies of granular or patterned media [17] and resolving
vortex-core-like structures [18].

On the other hand LLG problems can be only moderately
stiff if refinement is only needed up to the level of a few
elements per exchange length, as is often required for simple
geometries. This is consistent with the fact that the mu-mag
standard problem 4 is often solved using explicit integration
methods with spatial refinement of around 0.5 exchange
lengths [19].

Similar experiments with the standard 4th order Runge-
Kutta method [2, pg. 41] and α = 1.0 (plots not shown) give
essentially the same results as for RK2. As α is reduced the
maximum stable step size ∆max is reduced, but not as rapidly
as for RK2. However due to the increased computational cost
per time step (a factor of two) the onset of stiffness (for all α)
occurs at roughly the same spatial discretisation as for RK2
with α = 0.1.

Finally we point out that the discussion above assumes
that the accuracy obtained with ∆ = ∆init is sufficient. If
higher accuracy than this is required then smaller time steps
are needed regardless of stability, so the limitations imposed
by stiffness are proportionally less significant.

V. CONCLUSIONS

Our results show that the LLG equation without magne-
tostatics or with analytical magnetostatic field calculations

becomes stiff (i.e. implicit methods are significantly more
efficient) as the number of elements per exchange length de-
creases below around 5. If FEM/BEM magnetostatic calcula-
tions are used stiffness occurs at much coarser discretisations,
beginning at around 2−3 elements per exchange length. In
all cases decreasing the damping constant also increases the
stiffness.

The results for the ODE version of the problem indicate that
the observed stiffness is a result of the spatial discretisation
and not the physics of the problem. Since more complex
physics is unlikely to reduce the stiffness, we expect that these
results will extend to other, more complex, problems.

We also found that our semi-implicit FEM/BEM method
does not suffer from discretisation induced stiffness.
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